Search results for " 11B68"
showing 2 items of 2 documents
Integration of a Dirac comb and the Bernoulli polynomials
2016
Abstract For any positive integer n , we consider the ordinary differential equations of the form y ( n ) = 1 − Ш + F where Ш denotes the Dirac comb distribution and F is a piecewise- C ∞ periodic function with null average integral. We prove the existence and uniqueness of periodic solutions of maximal regularity. Above all, these solutions are given by means of finite explicit formulae involving a minimal number of Bernoulli polynomials. We generalize this approach to a larger class of differential equations for which the computation of periodic solutions is also sharp, finite and effective.
Compressed Drinfeld associators
2004
Drinfeld associator is a key tool in computing the Kontsevich integral of knots. A Drinfeld associator is a series in two non-commuting variables, satisfying highly complicated algebraic equations - hexagon and pentagon. The logarithm of a Drinfeld associator lives in the Lie algbera L generated by the symbols a,b,c modulo [a,b]=[b,c]=[c,a]. The main result is a description of compressed associators that satisfy the compressed pentagon and hexagon in the quotient L/[[L,L],[L,L]]. The key ingredient is an explicit form of Campbell-Baker-Hausdorff formula in the case when all commutators commute.