Search results for " 11B68"

showing 2 items of 2 documents

Integration of a Dirac comb and the Bernoulli polynomials

2016

Abstract For any positive integer n , we consider the ordinary differential equations of the form y ( n ) = 1 − Ш + F where Ш denotes the Dirac comb distribution and F is a piecewise- C ∞ periodic function with null average integral. We prove the existence and uniqueness of periodic solutions of maximal regularity. Above all, these solutions are given by means of finite explicit formulae involving a minimal number of Bernoulli polynomials. We generalize this approach to a larger class of differential equations for which the computation of periodic solutions is also sharp, finite and effective.

Bernoulli differential equationDifferential equations[ MATH ] Mathematics [math]Differential equationGeneral MathematicsBernoulli polynomials010102 general mathematicsMathematical analysisDirac combPiecewise-smooth01 natural sciencesDirac comb010305 fluids & plasmasBernoulli polynomialsPeriodic functionsymbols.namesakeDistribution (mathematics)Ordinary differential equation0103 physical sciencessymbols[MATH]Mathematics [math]0101 mathematicsBernoulli processMathematicsMSC: 34A36 37B55 11B68 70G60
researchProduct

Compressed Drinfeld associators

2004

Drinfeld associator is a key tool in computing the Kontsevich integral of knots. A Drinfeld associator is a series in two non-commuting variables, satisfying highly complicated algebraic equations - hexagon and pentagon. The logarithm of a Drinfeld associator lives in the Lie algbera L generated by the symbols a,b,c modulo [a,b]=[b,c]=[c,a]. The main result is a description of compressed associators that satisfy the compressed pentagon and hexagon in the quotient L/[[L,L],[L,L]]. The key ingredient is an explicit form of Campbell-Baker-Hausdorff formula in the case when all commutators commute.

[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT]Hexagon equationPure mathematicsCampbell–Baker–Hausdorff formulaKnotLie algebraModuloCompressed Vassiliev invariantsPentagon equation01 natural sciencessymbols.namesakeMathematics - Geometric TopologyChord diagramsExtended Bernoulli numbers[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]Mathematics::Quantum Algebra0103 physical sciencesLie algebraMathematics - Quantum AlgebraFOS: MathematicsQuantum Algebra (math.QA)0101 mathematicsAlgebraic numberBernoulli numberQuotientMathematics[MATH.MATH-GT] Mathematics [math]/Geometric Topology [math.GT]Zeta functionDiscrete mathematics[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA]Algebra and Number TheoryVassiliev invariants[ MATH.MATH-QA ] Mathematics [math]/Quantum Algebra [math.QA]Drinfeld associator57M25 57M27 11B68 17B01010102 general mathematicsAssociatorQuantum algebraGeometric Topology (math.GT)Kontsevich integralRiemann zeta functionsymbols[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA]Compressed associator010307 mathematical physicsBernoulli numbers
researchProduct